
CS 61C RISC-V Pipelining and
Hazards

Spring 2024 Discussion 8

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 By pipelining the CPU datapath, each single instruction will execute faster (latency

is reduced), resulting in a speed-up in performance.

1.2 A pipelined CPU datapath results in instructions being executed with higher through-

put (than the single-cycle CPU).

1.3 Through adding additional hardware, we can implement two ’read’ ports as well

as a ’write’ port to the RegFile (where registers can be accessed). This solves the

hazard of two instructions reading and writing to the same register simultaneously.

1.4 All data hazards can be resolved with forwarding.

1.5 As stalling reduces performance significantly, we generally prefer other solutions to

fixing pipeline hazards, even at the cost of complexity or hardware. In a modern-day

pipelined CPU, are there still use-cases for stalling to resolve potential hazards? If

so, describe a program that would.



2 RISC-V Pipelining and Hazards

2 Pipelining Registers
In order to pipeline, we separate the datapath into 5 discrete stages, each completing

a different function and accessing different resources on the way to executing an

entire instruction.

In the IF stage, we use the Program Counter to access our instruction as it is stored

in IMEM. Then, we separate the distinct parts we need from the instruction bits in

the ID stage and generate our immediate, the register values from the RegFile, and

other control signals. Afterwards, using these values and signals, we complete the

necessary ALU operations in the EX stage. Next, anything we do in regards with

DMEM (not to be confused with RegFile or IMEM) is done in the MEM stage,

before we hit the WB stage, where we write the computed value that we want back

into the return register in the RegFile.

These 5 stages, divided by registers as shown in the figure, allow the datapath

to provide a pipeline for multiple instructions to operate at the same time, each

accessing different resources. A pipelined datapath is provided for you on the last

page. Use it to answer the following questions.

2.1 What is the purpose of the new registers?

2.2 Looking at the way PC is passed through the datapath, there are two places where

+4 is added to the PC, once in the IF and MEM stage. Why do we add +4 to the

PC again in the memory stage?

2.3 Why do we need to save the instruction in a register multiple times?

3 Performance Analysis
Register clk-to-q 30 ps

Register setup 20 ps

Register hold 10 ps

Mux 25 ps

Branch comp. 75 ps

ALU 200 ps

Imm. Gen. 15 ps

Memory read 250 ps

DMEM write setup

200 ps

RegFile read 100 ps

RegFile setup 20 ps

Given above are sample delays and setup times for each of the datapath components

and registers. In the questions below, use these in conjunction with the pipelined

datapath on the last page to answer them.



RISC-V Pipelining and Hazards 3

3.1 What would be the fastest possible clock time for a single cycle datapath? Recall

from last week’s discussion that one instruction which exercises the critical path is

lw.

(HINT: tclk-cycle ≥ tclk-to-q + tlongest-combinational-path + tsetup)

3.2 What is the fastest possible clock time for a pipelined datapath?

3.3 What is the speedup from the single cycle datapath to the pipelined datapath? Why

is the speedup less than 5×?

4 Hazards
One of the costs of pipelining is that it introduces pipeline hazards. Hazards,

generally, are issues with something in the CPU’s instruction pipeline that could

cause the next instruction to execute incorrectly.

The 5-stage pipelined CPU introduces three types: structural hazards (hardware not

sufficient), data hazards (using wrong values in computation), and control hazards

(executing the wrong instruction).

Structural Hazards
Structural hazards occur when more than one instruction needs to use the same

datapath resource at the same time. In the standard 5-stage pipeline, there aren’t

structural hazards, unless there are active changes to the pipeline. The structural

hazards that could exist are prevented by RV32I’s hardware requirements.

There are two main causes of structural hazards:



4 RISC-V Pipelining and Hazards

• Register File: The register file is accessed both during ID, when it is read to

decode the instruction, and the corresponding register values; and during WB,

when it is written to in the rd register. If the RegFile only had one port, then

it wouldn’t work since we have one instruction being decoded and another

writing back.

– We resolve this by having separate read and write ports. However, this

only works if the read/written registers are different.

• Main Memory: Main memory is accessed for both instructions and data.

If memory could only support one read/write at a time, then instruction A

going through IF and attempting to fetch an instruction from memory cannot

happen at the same time as instruction B attempting to read (or write) to

data portions of memory.

– Having a separate instruction memory (abbreviated IMEM) and data

memory (abbreviated DMEM) solves this hazard.

Something to remember about structural hazards is that they can always be resolved

by adding more hardware.

Data Hazards
Data hazards are caused by data dependencies between instructions. In CS 61C,

where we always assume that instructions go through the processor in order, we see

data hazards when an instruction reads a register before a previous instruction has

finished writing to that register.

There are three types of data hazards:

• EX-ID: this hazard exists because the output from the execute stage is not

written back to the RegFile until the writeback stage, yet can be requested by

the subsequent instruction in the decode stage.

• MEM-ID: this hazard exists because the output from the memory access

stage is not written back to the RegFile until the writeback stage, but can be

requested from the decode stage, just as in EX-ID.

• WB-ID To account for reads and writes to the same register, processors

usually write to the register during the first half of the clock cycle, and read

from it during in the second half. This is an implementation of the idea of

double pumping, which is when data is transferred along data buses at

double the rate, by utilising both the rising and falling clock edges in a clock

cycle.

Solving Data Hazards
For all questions, assume no branch prediction or double-pumping (i.e. write-

then-read in one cycle for RegFile).

Forwarding

Most data hazards can be resolved by forwarding, which is when the result of the

EX or MEM stage is sent to the EX stage for a following instruction to use.



RISC-V Pipelining and Hazards 5

Side note: how is forwarding (EX to EX or MEM to EX) implemented in hardware?

We add 2 wires: one from the beginning of the MEM stage for the output of the

ALU and one from the beginning of the WB stage. Both of these wires will connect

to the A/B muxes in the EX stage.

4.1 Look for data hazards in the code below, and figure out how forwarding could be

used to solve them.

Instruction C1 C2 C3 C4 C5 C6 C7

1. addi t0, a0, -1 IF ID EX MEM WB

2. and s2, t0, a0 IF ID EX MEM WB

3. sltiu a0, t0, 5 IF ID EX MEM WB

4.2 Imagine you are a hardware designer working on a CPU’s forwarding control logic.

How many instructions after the addi instruction could be affected by data hazards

created by this addi instruction?

Stalls

4.3 Look for data hazards in the code below. One of them cannot be solved with

forwarding—why? What can we do to solve this hazard?

Instruction C1 C2 C3 C4 C5 C6 C7 C8

1. addi s0, s0, 1 IF ID EX MEM WB

2. addi t0, t0, 4 IF ID EX MEM WB

3. lw t1, 0(t0) IF ID EX MEM WB

4. add t2, t1, x0 IF ID EX MEM WB

4.4 Say you are the compiler and can re-order instructions to minimize data hazards

while guaranteeing the same output. How can you fix the code above?



6 RISC-V Pipelining and Hazards

Detecting Data Hazards

Say we have the rs1, rs2, RegWEn, and rd signals for two instructions (instruction

n and instruction n+ 1) and we wish to determine if a data hazard exists across the

instructions. We can simply check to see if the rd for instruction n matches either

rs1 or rs2 of instruction n+ 1, indicating that such a hazard exists (why does this

make sense?).

We could then use our hazard detection to determine which forwarding paths/number

of stalls (if any) are necessary to take to ensure proper instruction execution. In

pseudo-code, part of this could look something like the following:

if (rs1(n + 1) == rd(n) && RegWen(n) == 1) {

set ASel for (n + 1) to forward ALU output from n

}

if (rs2(n + 1) == rd(n) && RegWen(n) == 1) {

set BSel for (n + 1) to forward ALU output from n

}

Control Hazards
Control hazards are caused by jump and branch instructions, because for all

jumps and some branches, the next PC is not PC + 4, but the result of the ALU

available after the EX stage. We could stall the pipeline for control hazards, but

this decreases performance.

4.5 Besides stalling, what can we do to resolve control hazards?

Extra for Experience
4.6 Given the RISC-V code above and a pipelined CPU with no forwarding, how many

hazards would there be? What types are each hazard? Consider all possible hazards

between all instructions.

How many stalls would there need to be in order to fix the data hazard(s), if the

RegFile supports double-pumping (i.e. write-then-read)? What about the control

hazard(s), if we use branch prediction?



RISC-V Pipelining and Hazards 7

Instruction C1 C2 C3 C4 C5 C6 C7 C8 C9

1. sub t1, s0, s1 IF ID EX MEM WB

2. or s0, t0, t1 IF ID EX MEM WB

3. sw s1, 100(s0) IF ID EX MEM WB

4. bgeu s0, s2, loop IF ID EX MEM WB

5. add t2, x0, x0 IF ID EX MEM WB



8 RISC-V Pipelining and Hazards


	Pre-Check
	Pipelining Registers
	Performance Analysis
	Hazards

