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1 Thread-Level Parallelism
OpenMP provides an easy interface for using multithreading within C programs.

Some examples of OpenMP directives:

• The parallel directive indicates that each thread should run a copy of the

code within the block. If a for loop is put within the block, every thread will

run every iteration of the for loop.

#pragma omp parallel

{

...

}

NOTE: The opening curly brace needs to be on a newline or else there will be

a compile-time error!

• The parallel for directive will split up iterations of a for loop over various

threads. Every thread will run different iterations of the for loop. The

exact order of execution across all threads, as well as the number of iterations

each thread performs, are both non-deterministic, as the OpenMP library

load balances threads for performance. The following two code snippets are

equivalent.

#pragma omp parallel for

for (int i = 0; i < n; i++) {

...

}

#pragma omp parallel

{

#pragma omp for

for (int i =0; i < n; i++) { ... }

}

There are two functions you can call that may be useful to you:

• int omp_get_thread_num() will return the number of the thread executing

the code

• int omp_get_num_threads() will return the number of total hardware threads

executing the code

1.1 For each question below, state and justify whether the program is sometimes

incorrect, always incorrect, slower than serial, faster than serial, or none

of the above. Assume the number of threads can be any integer greater than 1.

Assume no thread will complete in its entirety before another thread starts executing.

Assume arr is an int[] of length n.

(a) // Set element i of arr to i

#pragma omp parallel

{
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for (int i = 0; i < n; i++)

arr[i] = i;

}

Slower than serial: There is no for directive, so every thread executes this loop

in its entirety. n threads running n loops at the same time will actually execute

in the same time as 1 thread running 1 loop. The values should all be correct at

the end of the loop since each thread is writing the same values. Furthermore,

the existence of parallel overhead due to the extra number of threads will slow

down the execution time.

(b) // Set arr to be an array of Fibonacci numbers.

arr[0] = 0;

arr[1] = 1;

#pragma omp parallel for

for (int i = 2; i < n; i++)

arr[i] = arr[i-1] + arr[i - 2];

Sometimes incorrect: While the loop has dependencies from previous data, in a

interweaved scheme where the threads take turns completing each iteration in

sequential order (e.g.

1 for (int i = omp_get_thread_num(); i < n; i += omp_get_num_threads())

is the work allocation per thread and the order of execution is based on the

shared variable i from 2 to n), each thread will have the correctly updated

shared arr to compute the next Fibonacci number. Note that this scheme

would still be slower than serial due to the amount of overhead required as the

threads need to wait for each other’s execution to finish as well as deal with

coherency issues regarding the shared data.

(c) // Set all elements in arr to 0;

int i;

#pragma omp parallel for

for (i = 0; i < n; i++)

arr[i] = 0;

Faster than serial: The for directive automatically makes loop variables (such

as the index) private, so this will work properly. The for directive splits up the

iterations of the loop to optimize for efficiency, and there will be no data races.

(d) // Set element i of arr to i;

int i;

#pragma omp parallel for

for (i = 0; i < n; i++)

*arr = i;

arr++;

Sometimes incorrect: Because we are not indexing into the array, there is a

data race to increment the array pointer. If multiple threads are executed such

that they all execute the first line, *arr = i; before the second line, arr++;,
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they will clobber each other’s outputs by overwriting what the other threads

wrote in the same position. However, taking a similar interweaved scheme as

in 4.1b, there is an order that will not encounter data races, though it will be

slower than serial.

2 Locks and Critical Sections
2.1 Consider the following multithreaded code to compute the product over all elements

of an array.

1 // Assume arr has length 8*n.

2 double fast_product(double *arr, int n) {

3 double product = 1;

4 #pragma omp parallel for

5 for (int i = 0; i < n; i++) {

6 double subproduct = arr[i*8]*arr[i*8+1]*arr[i*8+2]*arr[i*8+3]

7 * arr[i*8+4]*arr[i*8+5]*arr[i*8+6]*arr[i*8+7];

8 product *= subproduct;

9 }

10 return product;

11 }

(a) What is wrong with this code?

The code has the shared variable product, which can cause data races when

multiple threads access it simultaneously.

(b) Fix the code using #pragma omp critical. What line would you place the

directive on to create that critical section?

1 double fast_product(double *arr, int n) {

2 double product = 1;

3 #pragma omp parallel for

4 for (int i = 0; i < n; i++) {

5 double subproduct = arr[i*8]*arr[i*8+1]*arr[i*8+2]*arr[i*8+3]

6 * arr[i*8+4]*arr[i*8+5]*arr[i*8+6]*arr[i*8+7];

7 #pragma omp critical

8 product *= subproduct;

9 }

10 return product;

11 }

2.2 When added to a #pragma omp parallel for statement, the reduction(operation

: var) directive creates and optimizes the critical section for a for loop, given a

variable that should be in the critical section and the operation being performed on

that variable. An example is given below.

1 // Assume arr has length n

2 int fast_sum(int *arr, int n) {

3 int result = 0;
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4 #pragma omp parallel for reduction(+: result)

5 for (int i = 0; i < n; i++) {

6 result += arr[i];

7 }

8 return result;

9 }

Fix the code by adding the reduction(operation: var) directive to the #pragma

omp parallel for statement. Which variable should be in the critical section, and

what is the operation being performed?

1 double fast_product(double *arr, int n) {

2 double product = 1;

3 #pragma omp parallel for reduction (*:product)

4 for (int i = 0; i < n; i++) {

5 double subproduct = arr[i*8]*arr[i*8+1]*arr[i*8+2]*arr[i*8+3]

6 * arr[i*8+4]*arr[i*8+5]*arr[i*8+6]*arr[i*8+7];

7 product *= subproduct;

8 }

9 return product;

10 }

3 Multi-Process Code
3.1 One of the many responsibilities of the OS is to load new programs, and in order

to do this it creates a new process and loads in the program to execute. In Linux,

the system call to create a new process is fork(). fork() creates a new process by

duplicating the calling process. The new process is referred to as the child process.

The calling process is referred to as the parent process. In the parent process, fork()

returns the process ID of the child or -1 if the fork has failed. In the child process,

it returns 0.

Use this information to complete the code block below, which creates a child process

to change the value of y while the parent process changes the value of x. Assume

any call to fork() is successful.

int x = 10;

int y = 0;

int pid = __________;

if(___________){

y++

}

else{

x--;

}

int x = 10;

int y = 0;

int pid = fork();
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if(pid == 0){

y++

}

else{

x--;

}

3.2 After the code segment completes, what will be the values of x and y for the parent?

x = 9;

y = 0;

Notice that only the value of x changes. This is because fork() creates a new

process, with a separate address space.

3.3 After the code segment completes, what will be the values of x and y for the child?

x = 10;

y = 1;

Notice that only the value of y changes. This is because fork() creates a new process,

with a separate address space. This enforces the separation between processes that

provides security within a system.

4 Open MPI
Beyond multithreading, the idea of process-level programming is to run one program

on multiple processes at once.

The Open MPI project provides a way of writing programs which can be run on

multiple processes. We can use its C libraries by calling their functions. Then, when

we run the program, Open MPI will create a bunch of processes and run a copy of

the code on each process. Here is a list of the most important functions for this

class:

• int MPI_Init(int* argc, char*** argv) should be called at the start of the

program, passing in the addresses of argc and argv.

• int MPI_Finalize() should be called at the end of the program.

• int MPI_Comm_size(MPI_COMM_WORLD, int *size) gets the total number of

processes running the program, and puts it in size.

• int MPI_Comm_rank(MPI_COMM_WORLD, int *rank) gets the ID of the current

process (0 ∼ total number of processes - 1) and puts it in rank.

• int MPI_Send(const void *buf, int count, MPI_Datatype datatype, int

dest, 0, MPI_COMM_WORLD) sends a message in buf, which consists of count

things with data type datatype to the process with ID dest.
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• int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source

, 0, MPI_COMM_WORLD, MPI_Status *status) receives a message consisting of

count things with data type datatype from the process with ID source, and

puts the message into buf. Some additional information is put into a struct at

status.

– If you want to receive a message from any source, set the source to be

MPI_ANY_SOURCE.

– The source of the message can be found in the MPI_SOURCE field of the

outputted status struct.

– If you don’t need the information in the status struct (e.g. because

you already know the source of the message), set the status address to

MPI_STATUS_IGNORE.

Note: Unlike OpenMP, the MPI functions will always put their results into an

address which you provide as their arguments. The return value of the function

is not an output, but rather the error code of the function. In this section, we

will implement the ManyMatMul example from lecture using a manager-worker

approach.

We have n pairs of matrices available in input files Task0a.mat, Task0b.mat, Task1a

.mat, Task1b.mat, ..., and we want to multiply each pair of matrices together, with

their outputs written to the output files Task0ab.mat, Task1ab.mat, ...

We want to accomplish this task using multiple processes such that one process (the

manager) assigns work to all other available processes (the workers).

4.1 First, perform the overall setup required for Open MPI to function. Fill out the

following skeleton of the program:

1 #define TERMINATE -1

2 #define READY 0

3

4 /**

5 * Takes in a number i. Reads files Taskia.mat, Taskib.mat,

6 * multiplies them, then outputs to Taskiab.mat.

7 */

8 int matmul(int i) {

9 // omitted

10 }

11

12 int main(int argc, char** argv) {

13 int numTasks = atoi(argv[1]); // read n from command line

14 MPI_Init(&argc, &argv); // initialize

15 // get process ID of this process and total number of processes

16 int procID, totalProcs;

17 MPI_Comm_size(MPI_COMM_WORLD, &totalProcs);

18 MPI_Comm_rank(MPI_COMM_WORLD, &procID);

19 // are we a manager or a worker?
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20 if (procID == 0) {

21 // manager node code (see Q2.3)

22 } else {

23 // worker node code (see Q2.2)

24 }

25 MPI_Finalize(); // clean up

26 }

4.2 Next, fill in what the worker needs to do. Worker processes should repeatedly ask

the manager for more work, then perform the work the manager asks of it. If it

receives a message that there’s no work to be done, it should stop. Let us define a

simple communication protocol between the manager and worker:

• When the worker is free, it will send the READY(0) message to the manager.

• The manager will send one number back, which is the task number the worker

should work on next.

• If there are no more tasks to done, then instead the manager will send back

the TERMINATE(-1) message to the worker.

We will use a single 32-bit signed integer as the message, which corresponds to the

MPI data type MPI_INT32_T.
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1 // worker node code

2 int32_t message;

3 while (true) {

4 // request more work

5 message = READY;

6 MPI_Send(&message, 1, MPI_INT32_T, 0, 0, MPI_COMM_WORLD);

7 // receive message from manager

8 MPI_Recv(&message, 1, MPI_INT32_T, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

9 if (message == TERMINATE) break; // all done!

10 matmul(message); // do work

11 }

4.3 Finally, fill in the code for the manager process. While there’s still more work to do,

the manager should wait for a message from any worker and respond with the next

task for the worker to work on. When all work has been allocated, the manager

should wait for another message from each worker (meaning the worker is done with

all work), and respond to each with the TERMINATE(-1) message. The manager

shouldn’t exit before sending TERMINATE to every worker!

1 // manager node code

2 int nextTask = 0; // next task to do

3 MPI_Status status;

4 int32_t message;

5 // assign tasks

6 while (nextTask < numTasks) {

7 // wait for a message from any worker

8 MPI_Recv(&message, 1, MPI_INT32_T, MPI_ANY_SOURCE, 0, MPI_COMM_WORLD, &status);

9 int sourceProc = status.MPI_SOURCE; // process ID of the source of the message

10 // assign next task

11 message = nextTask;

12 MPI_Send(&message, 1, MPI_INT32_T, sourceProc, 0, MPI_COMM_WORLD);

13 nextTask++;

14 }

15 // wait for all processes to finish

16 for (int i = 0; i < totalProcs - 1; i++) {

17 // wait for a message from any worker

18 MPI_Recv(&message, 1, MPI_INT32_T, MPI_ANY_SOURCE, 0, MPI_COMM_WORLD, &status);

19 int sourceProc = status.MPI_SOURCE; // process ID of the source of the message

20 message = TERMINATE;

21 MPI_Send(&message, 1, MPI_INT32_T, sourceProc, 0, MPI_COMM_WORLD);

22 }
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5 Open MPI with Dependencies
Now that we have a working Open MPI implementation of our ManyMatMul task,

lets extend this to account for data dependencies! Let’s change our task to have

an additional step: multiply n output matrices Task0ab.mat, Task1ab.mat, etc. in

place with a set matrix kernel.mat.

Here we provide a new function to use in the worker process:

1 /**

2 * Takes in a number i. Reads files Taskiab.mat and

3 * multiplies them with kernel.mat in place. If file

4 * does not exist, return -1

5 */

6 int final_matmul(int i) {

7 //omitted

8 }

5.1 Provided below is the pseudocode for the manager process in our new implementation.

Assume that our program and workers are set up in the same way as described in

Q3.

1 // manager node pseudocode

2 counter = 0;

3 while (counter < n) {

4 Wait for a message from any worker;

5 Assign worker with the next pair of matrices to multiply,

6 worker will call matmul(counter);

7 counter++;

8 }

9 counter = 0; // start in-place multiplication

10 while (counter < n) {

11 Wait for a message from any worker;

12 Assign worker with next in-place multiplication,

13 worker will call final_matmul(counter);

14 counter++;

15 }

16 // wait for all processes to finish

17 for each process {

18 Wait for a message from any worker;

19 Send worker message to TERMINATE;

20 }

Will this program successfully output the correct matrix files? If it doesn’t, explain

why. If it does, does it optimally parallelize our desired task? You may assume that

if final_matmul returns -1, the worker will wait some amount of time before sending

the manager another READY message.

As the second while loop does its work in sequential order, the program will be forced

to wait for the corresponding first task to finish before attempting any additional
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final_matmuls. For example, if Task1 was a massive, high-dimensional calculation,

each other process would need to wait for the Task1 to finish before attempting

any of the in-place multiplications in the second while loop, creating a performance

bottleneck.
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