
CS 61C Virtual Memory
Spring 2024 Discussion 12

1 Precheck
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 Having virtual memory helps protect a system.

True. By dedicating specific pages to a program, the OS can ensure that a program

does not access pages it’s not been given access to, providing isolation between

programs.

1.2 The virtual address space is limited by the amount of memory in the system.

False. The physical address space is limited by the amount of physical memory in

the system, the size of the virtual address space is set by the OS.

1.3 The virtual and physical page number must be the same size.

False. There could be fewer physical pages than virtual pages. However, the page

size does need to be the same.

1.4 If a page table entry can not be found in the TLB, then a page fault has occurred.

False, the TLB acts as a cache for the page table, so an item can be valid in page

table but not stored in TLB. A page fault occurs either when a page cannot be

found in the page table or it has an invalid bit.

2 Addressing
Virtual Address (VA) What your program uses

Virtual Page Number (VPN) Page Offset

Physical Address (PA) What actually determines where in memory to go

Physical Page Number (PPN) Page Offset

For example, with 4 KiB pages and byte addresses, there are 12 page offset bits

since 4 KiB = 212 B = 4096 B.



2 Virtual Memory

Pages
A chunk of memory or disk with a set size. Addresses in the same virtual page map

to addresses in the same physical page. The page table determines the mapping.

Valid Dirty Permission Bits PPN

— Page entry (VPN: 0) —

— Page entry (VPN: 1) —

Each stored row of the page table is called a page table entry. There are 2VPN bits

such entries in a page table. Say you have a VPN of 5 and you want to use the page

table to find what physical page it maps to; you’ll check the 5th (0-indexed) page

table entry. If the valid bit is 1, then that means that the entry is valid (in other

words, the physical page corresponding to that virtual page is in main memory as

opposed to being only on disk) and therefore you can get the PPN from the entry

and access that physical page in main memory.

The page table is stored in memory: the OS sets a register (the Page Table Base

Register) telling the hardware the address of the first entry of the page table. If you

write to a page in memory, the processor updates the “dirty” bit in the page table

entry corresponding to that page, which lets the OS know that updating that page

on disk is necessary (remember: main memory contains a subset of what’s on disk).

This is a similar concept as having a dirty bit for each cache block in a write-back

cache. Each process gets its own illusion of full memory to work with, and therefore

its own page table.

Protection Fault The page table entry for a virtual page has permission bits that

prohibit the requested operation. This is how a segmentation fault occurs.

Page Fault The page table entry for a virtual page has its valid bit set to false.

This means that the entry is not in memory. For simplicity, we will assume

the address causing the page fault is a valid request, and maps to a page that

was swapped from memory to disk. Since the requested address is valid, the

operating system checks if the page exists on disk. If so, we transfer the page

to memory (evicting another page if necessary), and add the mapping to the

page table and the translation lookaside buffer (TLB).



Virtual Memory 3

Translation Lookaside Buffer
A cache for the page table. Each block is a single page table entry. If an entry is

not in the TLB or the valid bit = 0, it’s a TLB miss. Typically fully associative:

TLB Valid Tag (VPN)
Page Table Entry

Page Dirty Permission Bits PPN

— TLB entry —

— TLB entry —

To access some memory location, we get the virtual page number (VPN) from the

virtual address (VA) and first try to translate the VPN to a physical page number

(PPN) using the translation lookaside buffer (TLB). If there is a TLB miss, we check

the page table for the VPN to PPN mapping. (remember: the TLB is a subset of

the page table!). If the valid bit = 0, then this is a page fault; memory doesn’t

contain the corresponding physical page! This means we need to fetch the physical

page from disk and put it into memory, update the page table entry, and load the

entry into the TLB, Then, we use the physical page and the offset of the physical

address in the page to access memory as the program intended.

2.1 What are three specific benefits of using virtual memory?

• Illusion of access to entire address space (bridges memory and disk in memory

hierarchy).

• Avoids memory address conflict between programs by simulating a separate

full address space for each process, so that the linker/loader don’t need to

know about other programs.

• Enforces protection between processes and even within a process (e.g. read-only

pages set up by the OS).

2.2 What should happen to the TLB when a new value is loaded into the page table

address register (i.e. we are switching page tables to those for another process)?

The valid bits of the TLB should all be set to 0. The page table entries in the TLB

corresponded to the old process/page table, so none of them are valid once the page

table address register points to a different page table.



4 Virtual Memory

3 VM Access Patterns
3.1 A processor has 16-bit addresses, 256 byte pages, and an 8-entry fully associative

TLB with LRU replacement (the LRU field is 3 bits and encodes the order in which

pages were accessed, 0 being the most recent). At some time instant, the TLB for

the current process is the initial state given in the table below, and we have three

free physical pages as given below. Assume that all current page table entries are in

the initial TLB. Assume also that all pages can be read from and written to. Fill in

the final state of the TLB according to the following access pattern, and also write

out the physical addresses corresponding to each location accessed.

Free Physical Pages 0x17, 0x18, 0x19

Access Pattern

1. 0x11f0 (Read)

2. 0x1301 (Write)

3. 0x20ae (Write)

4. 0x2332 (Write)

5. 0x20ff (Read)

6. 0x3415 (Write)

Initial TLB

VPN PPN Valid Dirty LRU

0x01 0x11 1 1 0

0x00 0x00 0 0 7

0x10 0x13 1 1 1

0x20 0x12 1 0 5

0x00 0x00 0 0 7

0x11 0x14 1 0 4

0xac 0x15 1 1 2

0xff 0xff 1 0 3

Final TLB

VPN PPN Valid Dirty

0x01 0x11 1 1

0x13 0x17 1 1

0x10 0x13 1 1

0x20 0x12 1 1

0x23 0x18 1 1

0x11 0x14 1 0

0xac 0x15 1 1

0x34 0x19 1 1

1. 0x11f0 (Read): hit, PA: 0x14f0; LRUs: 1, 7, 2, 5, 7, 0, 3, 4



Virtual Memory 5

2. 0x1301 (Write): miss, map VPN 0x13 to PPN 0x17, set valid and dirty,

PA: 0x1701; LRUs: 2, 0, 3, 6, 7, 1, 4, 5

3. 0x20ae (Write): hit, set dirty, PA: 0x12ae; LRUs: 3, 1, 4, 0, 7, 2, 5, 6

4. 0x2332 (Write): miss, map VPN 0x23 to PPN 0x18, set valid and dirty,

PA: 0x1832; LRUs: 4, 2, 5, 1, 0, 3, 6, 7

5. 0x20ff (Read): hit, PA: 0x12ff; LRUs: 4, 2, 5, 0, 1, 3, 6, 7

6. 0x3415 (Write): miss and replace last entry, map VPN 0x34 to 0x19, set

dirty, PA: 0x1915; LRUs, 5, 3, 6, 1, 2, 4, 7, 0


	Precheck
	Addressing
	VM Access Patterns

