CS 61C Virtual Memory
Spring 2024 Discussion 12

1 Precheck

This section is designed as a conceptual check for you to determine if you conceptually
understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:
Having virtual memory helps protect a system.

True. By dedicating specific pages to a program, the OS can ensure that a program
does not access pages it’s not been given access to, providing isolation between

programs.
The virtual address space is limited by the amount of memory in the system.

False. The physical address space is limited by the amount of physical memory in
the system, the size of the virtual address space is set by the OS.

The virtual and physical page number must be the same size.

False. There could be fewer physical pages than virtual pages. However, the page

size does need to be the same.
If a page table entry can not be found in the TLB, then a page fault has occurred.

False, the TLB acts as a cache for the page table, so an item can be valid in page
table but not stored in TLB. A page fault occurs either when a page cannot be

found in the page table or it has an invalid bit.

2 Aclclressing

Virtual Address (VA) What your program uses

Virtual Page Number (VPN) Page Offset

Physical Address (PA) What actually determines where in memory to go

Physical Page Number (PPN) Page Offset

For example, with 4 KiB pages and byte addresses, there are 12 page offset bits
since 4 KiB = 2!2 B = 4096 B.

2 Virtual Memory

) }]
V. Addr_) > :
CPU :' s || i Cache | !
1 1
] : : l
] A i 1 A {
) ') '
] !] !
] !] !
P : : :
age | | i
' | Table || [Memory | ¢
! | ! 1
! | ' i
) Translation |) Memory !
! Unit : ! Unit :
Pages Data

A chunk of memory or disk with a set size. Addresses in the same virtual page map

to addresses in the same physical page. The page table determines the mapping.

Valid | Dirty | Permission Bits | PPN
Page entry (VPN: 0)
Page entry (VPN: 1)

Each stored row of the page table is called a page table entry. There are 2VFPN bits
such entries in a page table. Say you have a VPN of 5 and you want to use the page
table to find what physical page it maps to; you'll check the 5th (0-indexed) page
table entry. If the valid bit is 1, then that means that the entry is valid (in other
words, the physical page corresponding to that virtual page is in main memory as
opposed to being only on disk) and therefore you can get the PPN from the entry

and access that physical page in main memory.

The page table is stored in memory: the OS sets a register (the Page Table Base
Register) telling the hardware the address of the first entry of the page table. If you
write to a page in memory, the processor updates the “dirty” bit in the page table
entry corresponding to that page, which lets the OS know that updating that page
on disk is necessary (remember: main memory contains a subset of what’s on disk).
This is a similar concept as having a dirty bit for each cache block in a write-back
cache. Each process gets its own illusion of full memory to work with, and therefore

its own page table.

Protection Fault The page table entry for a virtual page has permission bits that

prohibit the requested operation. This is how a segmentation fault occurs.

Page Fault The page table entry for a virtual page has its valid bit set to false.
This means that the entry is not in memory. For simplicity, we will assume
the address causing the page fault is a valid request, and maps to a page that
was swapped from memory to disk. Since the requested address is valid, the
operating system checks if the page exists on disk. If so, we transfer the page
to memory (evicting another page if necessary), and add the mapping to the
page table and the translation lookaside buffer (TLB).

Virtual Memory 3

Translation Lookaside Buffer

A cache for the page table. Each block is a single page table entry. If an entry is
not in the TLB or the valid bit = 0, it’s a TLB miss. Typically fully associative:

] Page Table Entry
TLB Valid | Tag (VPN)
Page Dirty Permission Bits | PPN
TLB entry
— TLB entry —
TLB Entries Page
Table
A\
V. Addr_ P. Addr_| P. Addr. |
CPU » “|TLB i Cache » "] Memory
Trap " Data
ﬂr
Data
—

To access some memory location, we get the virtual page number (VPN) from the
virtual address (VA) and first try to translate the VPN to a physical page number
(PPN) using the translation lookaside buffer (TLB). If there is a TLB miss, we check
the page table for the VPN to PPN mapping. (remember: the TLB is a subset of
the page table!). If the valid bit = 0, then this is a page fault; memory doesn’t
contain the corresponding physical page! This means we need to fetch the physical
page from disk and put it into memory, update the page table entry, and load the
entry into the TLB, Then, we use the physical page and the offset of the physical
address in the page to access memory as the program intended.

What are three specific benefits of using virtual memory?

e Illusion of access to entire address space (bridges memory and disk in memory
hierarchy).

e Avoids memory address conflict between programs by simulating a separate
full address space for each process, so that the linker/loader don’t need to

know about other programs.

e Enforces protection between processes and even within a process (e.g. read-only
pages set up by the OS).

What should happen to the TLB when a new value is loaded into the page table
address register (i.e. we are switching page tables to those for another process)?

The valid bits of the TLB should all be set to 0. The page table entries in the TLB
corresponded to the old process/page table, so none of them are valid once the page
table address register points to a different page table.

4 Virtual Memory

3 VM Access Patterns

A processor has 16-bit addresses, 256 byte pages, and an 8-entry fully associative
TLB with LRU replacement (the LRU field is 3 bits and encodes the order in which
pages were accessed, 0 being the most recent). At some time instant, the TLB for
the current process is the initial state given in the table below, and we have three
free physical pages as given below. Assume that all current page table entries are in
the initial TLB. Assume also that all pages can be read from and written to. Fill in
the final state of the TLB according to the following access pattern, and also write

out the physical addresses corresponding to each location accessed.

Free Physical Pages 0x17, 0x18, 0x19

Access Pattern

1. ox11fe (Read)

2. 0x1301 (Write)

3. 0x20ae (Write)

Initial TLB
VPN

PPN

Valid Dirty LRU

0x01
0x00
0x10
0x20
0x00
ox11
oxac

oxff
Final TLB

VPN

0x11
0x00
0x13
0x12
0x00
0x14
0x15
oxff

PPN

1
0

O N T Sy

—_

Valid Dirty

1

SO =, O O O = O

0x01
0x13
0x10
0x20
0x23
ox11
Oxac

0x34

1. ox11f0 (Read): hit, PA: 0x14f0; LRUs: 1, 7, 2,5, 7,0, 3, 4

0x11
ox17
0x13
0x12
0x18
ox14
0x15
0x19

1
1
1

—_ =

e = e e e T

0

7
1
5
7
4
2
3

4. 0x2332 (Write)
5. 0x20ff (Read)

6. 0x3415 (Write)

Virtual Memory 5
. 0x1301 (Write): miss, map VPN 0x13 to PPN 0x17, set valid and dirty,
PA: 0x1701: LRUs: 2,0, 3, 6,7, 1,4, 5

. 0x20ae (Write): hit, set dirty, PA: Ox12ae; LRUs: 3, 1,4,0,7,2,5,6

. 0x2332 (Write): miss, map VPN 0x23 to PPN 0x18, set valid and dirty,
PA: 0x1832: LRUs: 4, 2, 5,1, 0, 3, 6, 7

. 0x20ff (Read): hit, PA: 0x12ff; LRUs: 4, 2, 5, 0, 1, 3, 6, 7

. 0x3415 (Write): miss and replace last entry, map VPN 0x34 to 0x19, set
dirty, PA: 0x1915; LRUs, 5, 3,6, 1, 2,4, 7,0

	Precheck
	Addressing
	VM Access Patterns

