CS 61C Semester Review
Spring 2024 Discussion 13

| Coding in C

Suppose we’ve defined a linked list struct as follows. Assume *1st points to the

first element of the list, or is NULL if the list is empty.

struct 11_node {
int first;
struct 11_node* rest;

}

Implement prepend, which adds one new value to the front of the linked list. Hint:
why use 11_nodex* 1st instead of 11_nodex 1st?

void prepend(struct 11_node*x 1lst, int value)

Implement free_11, which frees all the memory consumed by the linked list.

void free_ll(struct 11_nodexx 1st)

2 C Generics

True or False: In C, if the variable ptr is a generic pointer, then it is still possible
to dereference ptr when used on the right-hand side of an assignment operator, e.g.,

. = *ptr

Generic functions (i.e., generics) in C use void * pointers to operate on memory
without the restriction of types. Such generics pointers do not support dereferencing,
as the number of bytes to access from memory is not known at compile-time. They

instead use byte handling functions such as memcpy and memmove.

2 Semester Review

Implement rotate, which will prompt the following program to generate the provided
output.

1 int main(int argc, char *xargv[]) {
2 int array[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

3 print_int_array(array, 10);
4 rotate(array, array + 5, array + 10);
5 print_int_array(array, 10);
6 rotate(array, array + 1, array + 10);
7 print_int_array(array, 10);
8 rotate(array + 4, array + 5, array + 6);
9 print_int_array(array, 10);
10 return 0;
1}
Output:
1 $./rotate
2 Array: 1, 2, 3, 4, 5,6, 7, 8, 9, 10
3 Array: 6, 7, 8, 9, 10, 1, 2, 3, 4, 5
4 Array: 7, 8, 9, 10, 1, 2, 3, 4, 5, 6
5 Array: 7, 8, 9, 10, 2, 1, 3, 4, 5, 6

Your Solution:

1 void rotate(void *front, void *separator, void *end) {

3 Data-Level Parallelism

SIMD-ize the following function, which returns the product of all of the elements in

an array.

static int product_naive(int n, int *a) {
int product = 1;
for (int i = 0; i < n; i++) {
product *= a[i];

Semester Review 3

3

return product;

}
Things to think about: When iterating through a loop and grabbing elements 4 at a

time, how should we update our index for the next iteration? What if our array has
a length that isn’t a multiple of 42 What can we do to handle this tail case?

static int product_vectorized(int n, int *a) {
int result[4];
__m128i prod_v = ;
for (int i =0; i < _____ ;1 += ___) { // Vectorized loop
prod_v =

3

__mm_storeu_si128(, s

for (int i = ;1< ; i+t+) { // Handle tail case
result[0] *= ;

}

return ;

4 Amdahl’s Law

Derive Amdahl’s Law using the ratio: Speedup = tpaive/toptimized

Assuming we have infinite threads and resources, what would our overall speedup
be for a program with some fraction of our code that can be parallelized F'?

rin

You write code that will search for the phrases “Hello Sean”, “Hello Jon”, “Hello
Dan”, “Hello Man”, “Bora is the Best!” in text files. With some analysis, you
determine you can speed up 40% of the execution by a factor of 2 when parallelizing

your code. What is the true speedup?

You run a profiling program on a different program to find out what percent of time

within the program each function takes. You get the following results:

Function | % Time
f 30%
g 10%
h 60%

4 Semester Review

(a) Assuming that each of these functions can be parallelized by the same speedup
factor, which one, if parallelized, would cause the most speedup for the entire

program?

(b) What speedup would you get if you parallelized just this function with 8 threads?
Assume that work is distributed evenly across threads and there is no overhead

for parallelization.

h Thread-Level Parallelism

5.1| For each question below, state and justify whether the program is sometimes
incorrect, always incorrect, slower than serial, faster than serial, or none
of the above. Assume the number of threads can be any integer greater than 1.
Assume no thread will complete in its entirety before another thread starts executing,.
Assume arr is an int[] of length n.

(a) // Set element i of arr to i
#pragma omp parallel
{

for (int i = 0; i < n; i++)

arr[i] i;

(b) // Set arr to be an array of Fibonacci numbers.
arr[0] = 0;
arr[1] = 1;
#pragma omp parallel for
for (int i = 2; i < n; i++)
arr[i] = arr[i-1] + arr[i - 21;

(¢) // Set all elements in arr to 0;
int i;
#pragma omp parallel for
for (i = 0; i < n; i++)
arr[i] = 0;

(d) // Set element i of arr to i;
int i;
#pragma omp parallel for
for (i =0; i < n; i++)
*arr = i,

arr++;

Semester Review 5

What potential issue can arise from this code?

// Decrements element i of arr. n is a multiple of omp_get_num_threads()
#pragma omp parallel

{
int threadCount = omp_get_num_threads();
int myThread = omp_get_thread_num();
for (int i = 0; i < n; i++) {
if (i % threadCount == myThread) arr[i] -= 1;
3
}

6 Fall 2021 Final Q9 - Parallelism

Fred’s Factorization Factory has unveiled their latest product: an algorithm that
factorizes an array of numbers provided. You want to test their factoring algorithm,

so you decide to write the following function:
int testFactor(uint32_t n, uint64_t xa, uint64_t *b, uint64_t *c);

e n: The length of each list of integers. For simplicity, you may assume that n is

a multiple of 4.
e a, b, c: Pointers to arrays of 64-bit integers.

testFactor returns 1 if, for all i from 0 to n-1, aliJ*b[i] == c[i]. Otherwise, it

returns 0.
You have access to the following SIMD instructions:

e _mm256 vectorlLoad(voidx ptr): Loads four uint64_t from ptr into a SIMD

vector

e void vectorStore(void* ptr, _mm256 mm): Stores the four uint64_t in mm at
ptr

e _mm256 vectorMul(.mm256 a, _mm256 b): Multiplies the values in a and b, and
returns the result

e _mm256 vectorSetd(): Returns a vector containing only Os.

e _mm256 vectorOr(_mm256 a, _mm256 b): Computes the bitwise OR of the two

vectors, and returns the result.

e _mm256 vectorXor(_mm256 a, _mm256 b): Computes the bitwise XOR of the

two vectors, and returns the result.
int testFactor(uint32_t n, uint64_t *a, uint64_t *b, uint64 *c)

uint64_t output[4];

Semester Review

_mm256 total =

for(int 1 = 0; i< ; it=
{

_mm256 adata = vectorlLoad(a+i);

_mm256 bdata = vectorLoad(b+i);

_mm256 cdata = vectorlLoad(c+i);

_mm256 prod =

_mm256 isequal =
}

vectorStore(output, total);

return

?

	Coding in C
	C Generics
	Data-Level Parallelism
	Amdahl's Law
	Thread-Level Parallelism
	Fall 2021 Final Q9 - Parallelism

